5

Estudos de Casos – Problema Inverso acoplado ao Modelo Deformável

5.1 Utilização do AG Acoplado ao Modelo Deformável

Além das modificações realizadas no modelo direto, foi necessária a modificação da função de avaliação desenvolvida por MARTINS, G.N., tendo em vista que esta somente visava otimizar a posição dos veículos. Na utilização do modelo deformável, quando as taxas deformação se igualarem a zero, os veículos se encontram em contato e, portanto, suas velocidades neste momento serão diferentes de zero. Com isso, o processo de otimização torna-se mais complexo, pois a função de avaliação tem de incluir as velocidades no momento em que a deformação plástica cessar.

A Figura 25, faz uma ilustração da função de avaliação utilizada neste primeiro modelo, baseada nas velocidades, nas posições do centro de massa e nas atitudes dos veículos.

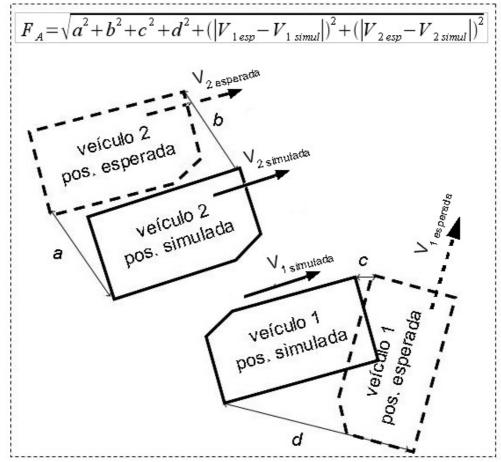


Figura 25 – Representação Gráfica da Função de Avaliação baseada nas posições, velocidades e atitudes dos veículos.

A função de avaliação utilizada neste modelo é representada pelas seguintes equações:

$$d = d_{1} + d_{2}$$

$$d_{1} = 1000 * \sqrt{((\Delta V_{XI})^{2} + (\Delta V_{YI})^{2} + (\Delta V_{X2})^{2} + (\Delta V_{Y2})^{2})}$$

$$d_{2} = 1000 * \sqrt{((\Delta X_{1})^{2} + (\Delta Y_{1})^{2} + (\Delta X_{2})^{2} + (\Delta Y_{2})^{2} + (\Delta X_{3})^{2} + (\Delta X_{4})^{2} + (\Delta Y_{4})^{2})}$$

$$\Delta V_{x1} = V f c A x - V f A x$$

$$\Delta V_{y1} = V f c A y - V f A y$$

$$\Delta V_{x2} = V f c B x - V f B x$$

$$\Delta V_{y2} = V f c B y - V f B y$$

$$\Delta X_{1} = X d d A - X d d c A$$

$$\Delta Y_{1} = Y d d A - Y d d c A$$

 $\Delta X_2 = XteA-XtecA$

 $\Delta Y_2 = YteA-YtecA$

 $\Delta X_3 = XddB-XddcB$

 $\Delta Y_3 = YddB-YddcB$

 $\Delta X_4 = XteB-XtecB$

 $\Delta Y_4 = YteB-YtecB$

onde,

VfcAx é a componente X da velocidade pós-colisão do carro A;

VfcAy é a componente Y da velocidade pós-colisão do carro A;

VfcBx é a componente X da velocidade pós-colisão do carro B;

VfcBy é a componente Y da velocidade pós-colisão do carro B;

- XddcA é a abscissa do ponto correspondente à dianteira direita do veículo A em relação ao centro de colisão;
- XddA é a abscissa do ponto correspondente à dianteira direita do veículo A em relação ao centro de colisão, encontrada pelo AG;
- YddcA é a ordenada o ponto correspondente à dianteira direita do veículo A em relação ao centro de colisão;
- YddA é a ordenada o ponto correspondente à dianteira direita do veículo A em relação ao centro de colisão, encontrada pelo AG;
- XtecA é a abscissa do ponto correspondente à traseira esquerda do veículo A em relação ao centro de colisão;
- XteA é a abscissa do ponto correspondente à traseira esquerda do veículo A em relação ao centro de colisão, encontrada pelo AG;
- YtecA é a ordenada do ponto correspondente à traseira esquerda do veículo A em relação ao centro de colisão;
- YteA é a ordenada do ponto correspondente à traseira esquerda do veículo A em relação ao centro de colisão, encontrada pelo AG;
- XddcB é a abscissa do ponto correspondente à dianteira direita do veículo B em relação ao centro de colisão;
- XddB é a abscissa do ponto correspondente à dianteira direita do veículo B em relação ao centro de colisão, encontrada pelo AG;
- YddcB é a ordenada o ponto correspondente à dianteira direita do veículo B em

relação ao centro de colisão;

- YddB é a ordenada o ponto correspondente à dianteira direita do veículo B em relação ao centro de colisão, encontrada pelo AG;
- XtecB é a abscissa do ponto correspondente à traseira esquerda do veículo B em relação ao centro de colisão;
- XteB é a abscissa do ponto correspondente à traseira esquerda do veículo B em relação ao centro de colisão, encontrada pelo AG;
- YtecB é a ordenada do ponto correspondente à traseira esquerda do veículo B em relação ao centro de colisão;
- YteB é a ordenada do ponto correspondente à traseira esquerda do veículo B em relação ao centro de colisão, encontrada pelo AG;

A utilização deste aplicativo pode ser dividida nas seguintes etapas:

- modificação do arquivo veículos.m;
- modificação do arquivo dados_ga_2.m;
- modificação do arquivo limites_ga.m.

A modificação do arquivo veículos.m é idêntica àquela mostrada no item 4.2 deste trabalho, quando foi tratado sobre a entrada de dados relativos à natureza estrutural dos veículos no modelo deformável.

A modificação do arquivo dados_ga_2.m é realizada por meio do fornecimento dos dados coletados após a colisão ou, no nosso caso, dos dados coletados do modelo direto. Estes dados são mostrados na Tabela 15.

A modificação do arquivo limites_ga.m é feita, primeiramente, determinandose o intervalo em que se encontram as variáveis descritas na Tabela 16, que são as variáveis relativas ao local da colisão e às posições e velocidades dos veículos.

DADO DE ENTRADA	VEÍCULO 1	VEÍCULO 2	UNDADE
Componente X da posição final do	XfcA	XfcB	m
CM			
Componente Y da posição final do	YfcA	YfcB	m
CM			
Ângulo do veículo em relação ao	psifcA	psifcB	graus
eixo X do referencial global			
Componente X da velocidade final	VfcAx	VfcBx	m/s
do CM			
Componente Y da velocidade final	VfcAy	VfcBy	m/s
do CM			

Tabela 15 – Modificação dos dados de entrada no arquivo dados_ga_2.m.

DADO DE ENTRADA	LIMITE	LIMITE	UNDADE
	SUPERIOR	INFERIOR	
Variável x do local de colisão	LS1	LI1	m
Variável y do local de colisão	LS2	LI2	m
Velocidade x de pré-colisão do	LS3	LI3	m/s
veiculo 1			
Velocidade y de pré-colisão do	LS4	LI4	m/s
veiculo 1			
Velocidade angular de pré-colisão	LS5	LI5	rad/s
do veiculo 1			
Velocidade x de pré-colisão do	LS6	LI6	m/s
veiculo 2			
Velocidade y de pré-colisão do	LS7	LI7	m/s
veiculo 2			
Velocidade angular de pré-colisão	LS8	LI8	rad/s
do veiculo 2			

Tabela 16 – Limites relativos à posição e velocidades no arquivo limites_ga.m.

Em segundo lugar, ainda no arquivo limites_ga.m, deve-se determinar os limites das variáveis relativas às áreas colididas dos veículos. Observando-se a Figura 26 pode-se verificar que, de acordo com este modelo, As áreas deformadas ocasionadas pela colisão entre os dois veículos devem ser planas e iguais.

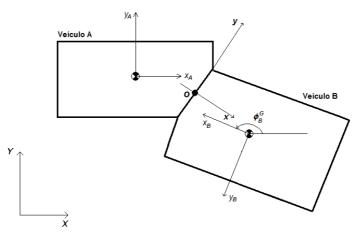


Figura 26 - representação da área deformada dos veículos.

Para determinação da área de cada veículo que foi deformada com a colisão, deve-se ter em mente a Figura 27, onde são mostrados os pontos que delineiam a área deformada para um dos veículos. O significado das distâncias mostradas na figura encontram-se descritas na Tabela 17. Observa-se que os pontos (x_i, y_i) e (x_f, y_f) estarão sempre sobre uma das laterais ou sobre as partes frontal e traseira. De modo a tornar o procedimento mais simples, considera-se, para a definição desses pontos, a distância percentual de cada um deles em relação às extremidades do veículo. Impõe-se também que o ponto (i), inicial da área, é aquele com menor coordenada (x_A) em módulo. Nota-se ainda que valores positivos e negativos destes parâmetros, associados aos quadrantes a que pertencem, estão relacionados respectivamente às coordenadas dos pontos $(x_I, y_I) = (l_d, b/2), (x_2, y_2) = (l_d, -b/2), (x_3, y_3) = (-l_I, b/2)$ e $(x_4, y_4) = (-l_I, -b/2)$.

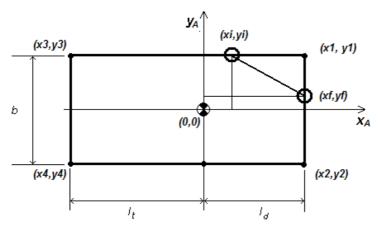


Figura 27 – Representação da área deformada em um dos veículos.

CARACTERÍSTICA	SÍMBOLO
bitola	b
distância do centro de massa a traseira	l_{t}
distância do centro de massa a dianteira	$l_{\rm d}$

Tabela 17 - Descrição das variáveis apresentadas na Figura 27.

A Tabela 18 resume as diversas possibilidades para definição dos pontos (x_i, y_i) e (x_f, y_f) , mostrando como se dá a entrada dos limites das áreas colididas baseadas nos percentuais dos dados estruturais dos veículos.

QUADRANTE	x_i	$y_{\rm i}$	x_f	y_f
1°.	+	+	+	+
1.	$\%$ de l_d	% de <i>b/</i> 2	$\%$ de l_d	% de <i>b</i> /2
2°.	-	+	-	+
2.	$\%$ de l_t	% de <i>b/</i> 2	$\%$ de l_t	% de <i>b</i> /2
3° .	-	-	-	-
3.	$\%$ de l_t	% de <i>b/</i> 2	$\%$ de l_t	% de <i>b</i> /2
4°.	+	_	+	-
4.	$\%$ de l_d	% de <i>b/</i> 2	$\%$ de l_d	% de <i>b</i> /2

Tabela 18 - Definição Percentual dos Pontos (x_i, y_i) e (x_f, y_f) .

Conhecendo então a geometria deformada dos veículos, cujos dados podem ser retirados dos veículos deformados da cena do acidente, preenche-se os dados relativos à parte colidida dos veículos, descritos na Tabela 19.

DADO DE ENTRADA	LIMITE	LIMITE	UNDADE
	SUPERIOR	INFERIOR	
Variável x do ponto de início da área	LS9	LI9	m
colidida do veículo 1 (xia)			
Variável y do ponto de início da área	LS10	LI10	m
colidida do veículo 1 (yia)			
Variável x do ponto final da área	LS11	LI11	m
colidida do veículo 1 (xfa)			
Variável y do ponto final da área	LS12	LI12	m
colidida do veículo 1 (yfa)			
Variável x do ponto de início da área	LS13	LI13	m
colidida do veículo 2 (xib)			
Variável y do ponto de início da área	LS14	LI14	m
colidida do veículo 2 (yib)			
Variável x do ponto final da área	LS15	LI15	m
colidida do veículo 2 (xfb)			
Variável y do ponto final da área	LS16	LI16	m
colidida do veículo 2 (yfb)			

Tabela 19 – Limites relativos às áreas colididas dos veículos.

Finalmente, para completar a os dados de entrada relacionados ao arquivo limites_ga.m, basta fornecer os limites do ângulo do veículo 1, que é o veículo cujo centro de massa encontra-se localizado na origem do referencial global. Este ângulo deve ser fornecido em relação ao referencial global, da forma descrita na Tabela 20.

DADO DE ENTRADA	SÍMBOLO
Limite inferior do angulo (em graus) do veículo 1 em	LI17
relação ao referencial global	
Limite superior do angulo (em graus) do veículo 1 em	LS17
relação ao referencial global	

Tabela 20 - Limites relativos ao ângulo do veículo 1.

Os parâmetros utilizados nos processos de otimização foram obtidos por meio de tentativa e erro, tendo por base a experiência adquirida por MARTINS, G.N.. Em todos os estudos de casos descritos a seguir, foram utilizados os seguintes parâmetros para o AG:

➤ tamanho da população (PopulationSize) – 50

As entradas do algoritmo (genes) serão as velocidades, posições e atitudes

iniciais, o local de colisão e características geométricas das partes colididas dos veículos. Cada cromossomo é uma combinação entre valores de genes. Quando é dito que o tamanho da população é de 50, significa que serão geradas 50 combinações de genes distintas.

- ➤ número de cromossomos inalterados por geração (EliteCount) 3
 A cada geração de valores serão escolhidas as 3 melhores combinações de genes (cromossomos), ou seja, as três combinações responsáveis por gerar as três menores funções de avaliação.
- ▶ probabilidade de cruzamento (CrossoverFraction) 95%
 A probabilidade de o algoritmo combinar dois conjuntos de genes para gerar um novo conjunto (novo cromossomo) é de 95%.
- função de cruzamento (CrossoverFcn) intermediário
 Respeita os limites inferior e superior das funções de avaliação de cada geração.
- ➤ critério de parada valor da função de avaliação menor que 100 ou 10 gerações.

5.1.1. Colisão Frontal com Deslocamento entre dois Veículos (offset)

Os resultados encontrados nesta simulação para a condição imediatamente anterior ao choque estão expostos na Tabela 21. Nesta tabela também são mostrados os erros percentuais entre os valores reais e os obtidos. Os limites do posicionamento dos veículos não são dados de entrada do aplicativo e por isso não estão expostos. Em vez dos limites do posicionamento dos veículos deve-se entrar no aplicativo com os limites das áreas colididas, representado na Figura 27. Assim como o posicionamento dos veículos, a atitude do veículo B é calculada a partir da atitude do veículo A e da área colidida dos veículos.

O erro nas tabelas foi obtido a partir da seguinte fórmula:

$$erro = \frac{|valor\ real - valor\ obtido|}{|valor\ real|}$$

Quando não for possível calcular o erro a partir da fórmula acima, será mostrado o erro absoluto, indicado com o símbolo "*".

VARIÁVEL	LIMITE	LIMITE	VALOR	VALOR	ERRO
	INFERIOR	SUPERIOR	OBTIDO	REAL	%
X do local da colisão (m)	0	4	2,0028	2	0,14
Y do local da colisão (m)	-1	0	-0,4853	-0,5	2,94
V _x do veículo A (m/s)	4	8	6,3310	6,705	5,58
V _y do veículo A (m/s)	-0,2	0,2	0,0292	0	0,0292*
w do veículo A (rad/s)	-0,1	0,1	0,0383	0	0,0383*
X do veículo A (m)	-	-	0,0024	0	0,0024*
Y do veículo A (m)	-	-	0,0115	0	0,0115*
Atitude do veículo A	-57,3	57,3	0.0441	0	0,0441*
(graus)	-57,5	37,3	0,0441	U	0,0441
V _x do veículo B (m/s)	4	8	6,4128	6,705	4,36
V _y do veículo B (m/s)	-0,2	0,2	0,0332	0	0,0332*
w do veículo B (rad/s)	-0,1	0,1	-0,0601	0	-0,0601*
X do veículo B (m)	-	-	4,0032	4	0,08
Y do veículo B (m)	-	-	-1,0087	-1	0,87
Atitude do veículo B			180,0441	180	0,02
(graus)	_	_	100,0441	180	0,02

Tabela 21 – Valores obtidos na Simulação de choque Frontal Offset.

Realiza-se agora a comparação gráfica entre os resultados gerados pela colisão original e os resultados gerados pelo AG. As Figuras 28 e 29 apresentam as comparações gráficas realizadas entre as posições obtidas no caso direto e as obtidas pelo AG, para os veículos 1 e 2 respectivamente.

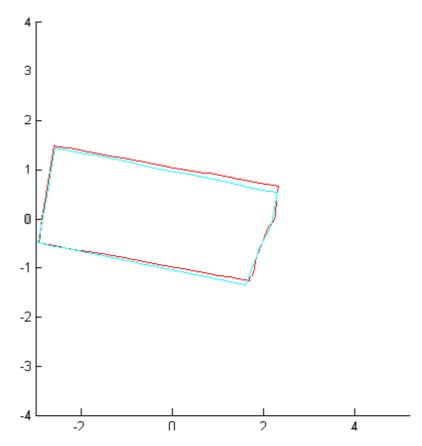


Figura 28 – Sobreposição entre o veículo 1 gerado a partir dos dados originais (vermelho) e o veículo 1 gerado pela 1ª função de avaliação do AG (ciano) – Frontal Offset.

Observando a Figura 28, pode-se perceber que o erro entre a posição obtida pelo caso direto e a posição obtida pelo AG é pequeno. Isto se dá, principalmente, por se tratar de choque frontal e pelo fato da posição e da atitude do veículo 1 não depender da área colidida.

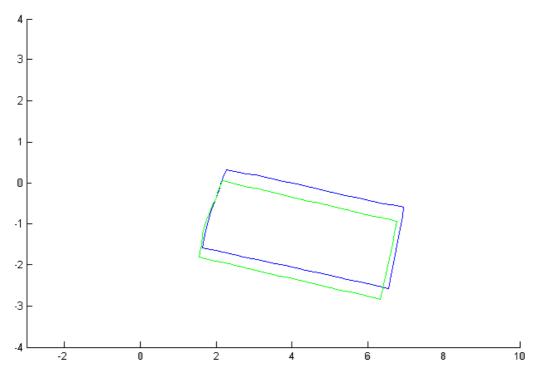


Figura 29 – Sobreposição entre o veículo 2 gerado a partir dos dados originais (azul) e o veículo 2 gerado pelo 1ª função de avaliação do AG (verde) – Frontal Offset.

Novamente, ao observar a Figura 29, pode-se perceber que o erro entre a posição obtida pelo caso direto e a posição obtida pelo AG é pequeno. Contudo, o erro foi maior do que o do veículo 1, uma vez que o modelo desenvolvido fixa as posições do veículo 1 inicialmente e, através da área colidida, encontra a posição do veículo 2.

5.1.2 Colisão Frontal Oblíqua a 170°

A Tabela 22 mostra a comparação entre os resultados obtidos pelo AG e os valores obtidos pelo caso direto em uma colisão frontal oblíqua a 170°, lembrando que quando não for possível calcular o erro será mostrado o erro absoluto, indicado com o símbolo "*".

VARIÁVEL	LIMITE	LIMITE	VALOR	VALOR	ERRO
	INFERIOR	SUPERIOR	OBTIDO	REAL	%
X do local da colisão (m)	0	4	2,0694	2	3,47
Y do local da colisão (m)	-1	0	-0,4727	-0,7	32,47
V _x do veículo A (m/s)	4	8	6,4739	6,705	3,45
V _y do veículo A (m/s)	0	0	0	0	0
w do veículo A (rad/s)	0	0	0	0	0
X do veículo A (m)	-	-	0,0482	0	0,0482*
Y do veículo A (m)	-	-	0,4838	0	0,4838*
Atitude do veículo A (graus)	-57,3	57,3	1,2396	0	1,2396*
V _x do veículo B (m/s)	4	8	6,5975	6,705	1,60
V _y do veículo B (m/s)	0	0	0	0	0
w do veículo B (rad/s)	0	0	0	0	0
X do veículo B (m)	-	-	4,0906	4,1	0,23
Y do veículo B (m)	-	-	-1,4292	-1	42,92
Atitude do veículo B (graus)	-	-	181,2396	170	6,61

Tabela 22 – Valores obtidos na Simulação da Colisão frontal oblíqua a 170°.

As Figuras 30 e 31 apresentam, em relação à colisão frontal oblíqua a 170°, as comparações gráficas realizadas entre as posições obtidas no caso direto e as obtidas pelo AG, para os veículos 1 e 2 respectivamente.

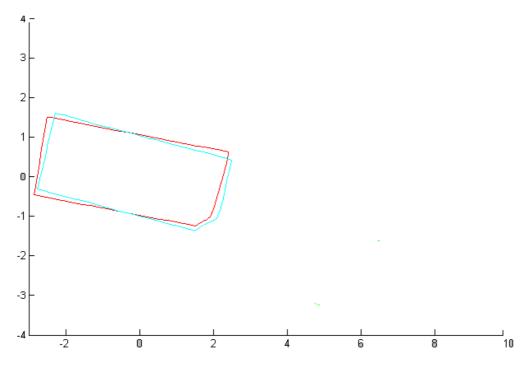


Figura 30 – Sobreposição entre o veículo 1 gerado a partir dos dados originais (vermelho) e o veículo 1 gerado pelo 1ª função de avaliação do AG (ciano) – Frontal Oblíqua a 170°.

Como pode-se observar na Figura 30, o erro entre as posições geradas pelo caso direto e pelo AG foram pequenas em relação ao veículo 1. Como dito anteriormente, este erro será menor do que a comparação efetuada com o veiculo 2, tendo em vista que o modelo utiliza a área colidida entre os veículos para encontrar a posição do segundo veículo.

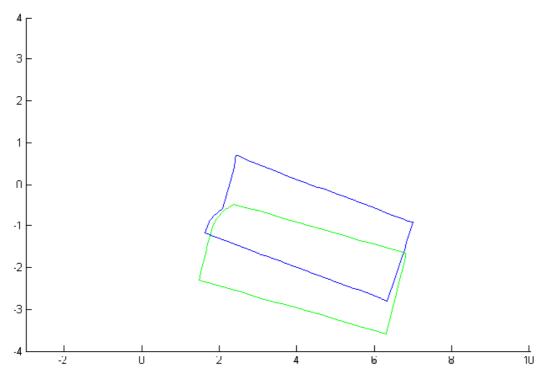


Figura 31 – Sobreposição entre o veículo 2 gerado a partir dos dados originais (azul) e o veículo 2 gerado pelo 1ª função de avaliação do AG (verde) – Frontal Oblíqua a 170°.

Observando a Figura 31, percebe-se que o erro encontrado agora foi maior do que o encontrado na simulação da colisão frontal com deslocamento entre os veículos (frontal offset). Isto mostra que a simplificação do modelo, ao considerar as áreas dos veículos planas durante a colisão, aumenta o erro em colisões oblíquas.

5.1.3. Colisão Traseira Oblíqua a 10° – Veículo da Frente Estático

A Tabela 23 mostra a comparação entre os resultados obtidos pelo AG e os valores obtidos pelo caso direto em uma colisão traseira oblíqua a 10° com o veículo da frente estático, lembrando que quando não for possível calcular o erro será mostrado o erro absoluto, indicado com o símbolo "*".

VARIÁVEL	LIMITE	LIMITE	VALOR	VALOR	ERRO
	INFERIOR	SUPERIOR	OBTIDO	REAL	%
X do local da colisão (m)	0	4	2,5440	2	27,20
Y do local da colisão (m)	0	1	0,9269	0,8	15,86
V _x do veículo A (m/s)	4	8	6,3306	6,705	5,58
V _y do veículo A (m/s)	0	0	0	0	0
w do veículo A (rad/s)	0	0	0	0	0
X do veículo A (m)	-	-	0,5393	0	0,5393*
Y do veículo A (m)	-	-	-0,0637	0	0,0637*
Atitude do veículo A	57.2	57.2	0.2674	0	0,2674*
(graus)	-57,3	57,3	-0,2674	U	0,2674**
V _x do veículo B (m/s)	0	0	0	0	0
V _y do veículo B (m/s)	0	0	0	0	0
w do veículo B (rad/s)	0	0	0	0	0
X do veículo B (m)	-	-	5,5071	5,2	5,91
Y do veículo B (m)	-	-	-0,0869	1	108,69
Atitude do veículo B			170 7226	100	5.40
(graus)	-	-	179,7326	190	5,40

Tabela 23 – Valores obtidos na Simulação da Colisão traseira oblíqua a 10° – Veículo da frente estático.

As Figuras 32 e 33 apresentam, em relação à colisão traseira oblíqua a 10° com o veículo da frente estático, as comparações gráficas realizadas entre as posições obtidas no caso direto e as obtidas pelo AG, para os veículos 1 e 2 respectivamente.

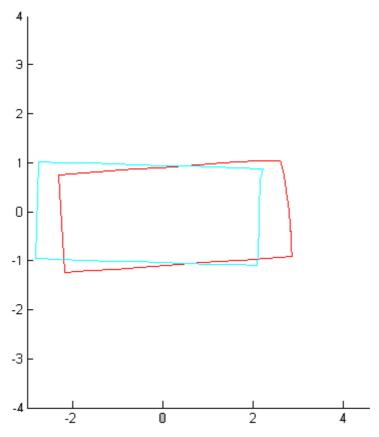


Figura 32 – Sobreposição entre o veículo 1 gerado a partir dos dados originais (vermelho) e o veículo 1 gerado pelo 1ª função de avaliação do AG (ciano) – Traseira Oblíqua a 10° – Veículo da frente estático.

Observando a Figura 32, pode-se perceber que o erro encontrado entre as posições obtidas no caso direto e as obtidas pelo AG foi maior do que as simulações frontais. Esta diferença pode ser explicada pela pela mudança das características estruturais dos veículos, tais como rigidez e amortecimento, da dianteira para a traseira.

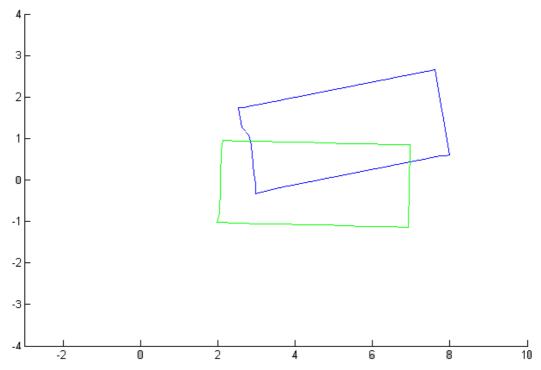


Figura 33 – Sobreposição entre o veículo 2 gerado a partir dos dados originais (azul) e o veículo 2 gerado pelo 1ª função de avaliação do AG (verde) – Traseira Oblíqua a 10° – Veículo da frente estático.

Analisando agora, a partir da Figura 33, os resultados obtidos pelo caso direto e pelo AG, observa-se que o erro foi maior que todas as comparações realizadas até então. Os principais motivos que podem ter ocasionado este fato são as diferenças estruturais na dianteira e na traseira do veículo e o modelo que considera a área entre os veículos plana no instante da colisão. Além da área ser considerada plana, a posição e atitude do veículo 2 são obtidas por meio desta área, o que, devido a esta simplificação, aumenta o erro obtido.

5.1.4. Colisão Traseira Oblíqua a 10° – Veículo da Frente a 5 km/h

A Tabela 24 mostra a comparação entre os resultados obtidos pelo AG e os valores obtidos pelo caso direto em uma colisão traseira oblíqua a 10° com o veículo da frente a 5 km/h, lembrando que quando não for possível calcular o erro será mostrado o erro absoluto, indicado com o símbolo "*".

VARIÁVEL	LIMITE	LIMITE	VALOR	VALOR	ERRO
	INFERIOR	SUPERIOR	OBTIDO	REAL	%
X do local da colisão (m)	0	4	2,7232	2	36,16
Y do local da colisão (m)	0	1	1,2159	0,8	51,98
V _x do veículo A (m/s)	4	8	4,6008	6,705	31,38
V _y do veículo A (m/s)	0	0	0	0	0
w do veículo A (rad/s)	0	0	0	0	0
X do veículo A (m)	-	-	0,7193	0	0,7193*
Y do veículo A (m)	-	-	0,2238	0	0,2238*
Atitude do veículo A	-57,3	57.2	0.2260	0	0.2260*
(graus)	-37,3	57,3	0,2269	U	0,2269*
V _x do veículo B (m/s)	-2	3	-3,6167	-1,39	160,19
V _y do veículo B (m/s)	0	0	0	0	0
w do veículo B (rad/s)	0	0	0	0	0
X do veículo B (m)	-	-	5,2670	5,2	1,28
Y do veículo B (m)	-	-	0,2058	1	79,42
Atitude do veículo B			170 7731	190	5 20
(graus)	-	_	179,7731	190	5,38

Tabela 24 – Valores obtidos na Simulação da Colisão traseira oblíqua a 10° – Veículo da frente a 5 km/h.

As Figuras 34 e 35 apresentam, em relação à colisão traseira oblíqua a 10° com o veículo da frente a 5 km/h, as comparações gráficas realizadas entre as posições obtidas no caso direto e as obtidas pelo AG, para os veículos 1 e 2 respectivamente.

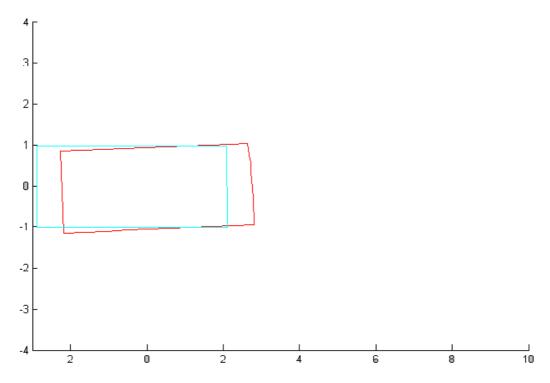


Figura 34 – Sobreposição entre o veículo 1 gerado a partir dos dados originais (vermelho) e o veículo 1 gerado pelo 1ª função de avaliação do AG (ciano) – Traseira Oblíqua a 10° – Veículo da frente a 5 km/h.

Observando a Figura 34, pode-se perceber que, assim como na simulação da colisão traseira oblíqua a 10° com o veículo da frente estático, o erro encontrado entre as posições obtidas no caso direto e as obtidas pelo AG foi maior do que as simulações frontais. Esta diferença pode ser explicada pela pela mudança das características estruturais dos veículos, tais como rigidez e amortecimento, da dianteira para a traseira.

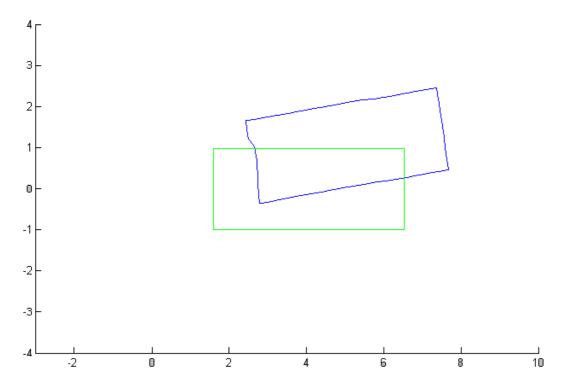


Figura 35 – Sobreposição entre o veículo 2 gerado a partir dos dados originais (azul) e o veículo 2 gerado pelo 1ª função de avaliação do AG (verde) – Traseira Oblíqua a 10° – Veículo da frente a 5 km/h.

Analisando agora, a partir da Figura 35, os resultados obtidos pelo caso direto e pelo AG, observa-se que o erro foi um pouco menor que o obtido na simulação da colisão traseira oblíqua com o veículo estático. Assim como na simulação da colisão traseira com o veículo estático, os principais motivos que podem ter ocasionado este erro maior que as simulações das colisões frontais são as diferenças estruturais na dianteira e na traseira do veículo e o modelo que considera a área entre os veículos plana no instante da colisão. Além da área ser considerada plana, a posição e atitude do veículo 2 são obtidas por meio desta área, o que, devido a esta simplificação, aumenta o erro obtido.